3.4.9 \(\int \frac {\log (a+b x)}{c+\frac {d}{x^2}} \, dx\) [309]

3.4.9.1 Optimal result
3.4.9.2 Mathematica [A] (verified)
3.4.9.3 Rubi [A] (verified)
3.4.9.4 Maple [A] (verified)
3.4.9.5 Fricas [F]
3.4.9.6 Sympy [F]
3.4.9.7 Maxima [C] (verification not implemented)
3.4.9.8 Giac [F]
3.4.9.9 Mupad [F(-1)]

3.4.9.1 Optimal result

Integrand size = 16, antiderivative size = 247 \[ \int \frac {\log (a+b x)}{c+\frac {d}{x^2}} \, dx=-\frac {x}{c}+\frac {(a+b x) \log (a+b x)}{b c}-\frac {\sqrt {d} \log (a+b x) \log \left (\frac {b \left (\sqrt {d}-\sqrt {-c} x\right )}{a \sqrt {-c}+b \sqrt {d}}\right )}{2 (-c)^{3/2}}+\frac {\sqrt {d} \log (a+b x) \log \left (-\frac {b \left (\sqrt {d}+\sqrt {-c} x\right )}{a \sqrt {-c}-b \sqrt {d}}\right )}{2 (-c)^{3/2}}+\frac {\sqrt {d} \operatorname {PolyLog}\left (2,\frac {\sqrt {-c} (a+b x)}{a \sqrt {-c}-b \sqrt {d}}\right )}{2 (-c)^{3/2}}-\frac {\sqrt {d} \operatorname {PolyLog}\left (2,\frac {\sqrt {-c} (a+b x)}{a \sqrt {-c}+b \sqrt {d}}\right )}{2 (-c)^{3/2}} \]

output
-x/c+(b*x+a)*ln(b*x+a)/b/c+1/2*ln(b*x+a)*ln(-b*(x*(-c)^(1/2)+d^(1/2))/(a*( 
-c)^(1/2)-b*d^(1/2)))*d^(1/2)/(-c)^(3/2)-1/2*ln(b*x+a)*ln(b*(-x*(-c)^(1/2) 
+d^(1/2))/(a*(-c)^(1/2)+b*d^(1/2)))*d^(1/2)/(-c)^(3/2)+1/2*polylog(2,(b*x+ 
a)*(-c)^(1/2)/(a*(-c)^(1/2)-b*d^(1/2)))*d^(1/2)/(-c)^(3/2)-1/2*polylog(2,( 
b*x+a)*(-c)^(1/2)/(a*(-c)^(1/2)+b*d^(1/2)))*d^(1/2)/(-c)^(3/2)
 
3.4.9.2 Mathematica [A] (verified)

Time = 0.13 (sec) , antiderivative size = 247, normalized size of antiderivative = 1.00 \[ \int \frac {\log (a+b x)}{c+\frac {d}{x^2}} \, dx=-\frac {x}{c}+\frac {(a+b x) \log (a+b x)}{b c}-\frac {\sqrt {d} \log (a+b x) \log \left (\frac {b \left (\sqrt {d}-\sqrt {-c} x\right )}{a \sqrt {-c}+b \sqrt {d}}\right )}{2 (-c)^{3/2}}+\frac {\sqrt {d} \log (a+b x) \log \left (-\frac {b \left (\sqrt {d}+\sqrt {-c} x\right )}{a \sqrt {-c}-b \sqrt {d}}\right )}{2 (-c)^{3/2}}+\frac {\sqrt {d} \operatorname {PolyLog}\left (2,\frac {\sqrt {-c} (a+b x)}{a \sqrt {-c}-b \sqrt {d}}\right )}{2 (-c)^{3/2}}-\frac {\sqrt {d} \operatorname {PolyLog}\left (2,\frac {\sqrt {-c} (a+b x)}{a \sqrt {-c}+b \sqrt {d}}\right )}{2 (-c)^{3/2}} \]

input
Integrate[Log[a + b*x]/(c + d/x^2),x]
 
output
-(x/c) + ((a + b*x)*Log[a + b*x])/(b*c) - (Sqrt[d]*Log[a + b*x]*Log[(b*(Sq 
rt[d] - Sqrt[-c]*x))/(a*Sqrt[-c] + b*Sqrt[d])])/(2*(-c)^(3/2)) + (Sqrt[d]* 
Log[a + b*x]*Log[-((b*(Sqrt[d] + Sqrt[-c]*x))/(a*Sqrt[-c] - b*Sqrt[d]))])/ 
(2*(-c)^(3/2)) + (Sqrt[d]*PolyLog[2, (Sqrt[-c]*(a + b*x))/(a*Sqrt[-c] - b* 
Sqrt[d])])/(2*(-c)^(3/2)) - (Sqrt[d]*PolyLog[2, (Sqrt[-c]*(a + b*x))/(a*Sq 
rt[-c] + b*Sqrt[d])])/(2*(-c)^(3/2))
 
3.4.9.3 Rubi [A] (verified)

Time = 0.49 (sec) , antiderivative size = 247, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {2856, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\log (a+b x)}{c+\frac {d}{x^2}} \, dx\)

\(\Big \downarrow \) 2856

\(\displaystyle \int \left (\frac {\log (a+b x)}{c}-\frac {d \log (a+b x)}{c \left (c x^2+d\right )}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\sqrt {d} \operatorname {PolyLog}\left (2,\frac {\sqrt {-c} (a+b x)}{a \sqrt {-c}-b \sqrt {d}}\right )}{2 (-c)^{3/2}}-\frac {\sqrt {d} \operatorname {PolyLog}\left (2,\frac {\sqrt {-c} (a+b x)}{\sqrt {-c} a+b \sqrt {d}}\right )}{2 (-c)^{3/2}}-\frac {\sqrt {d} \log (a+b x) \log \left (\frac {b \left (\sqrt {d}-\sqrt {-c} x\right )}{a \sqrt {-c}+b \sqrt {d}}\right )}{2 (-c)^{3/2}}+\frac {\sqrt {d} \log (a+b x) \log \left (-\frac {b \left (\sqrt {-c} x+\sqrt {d}\right )}{a \sqrt {-c}-b \sqrt {d}}\right )}{2 (-c)^{3/2}}+\frac {(a+b x) \log (a+b x)}{b c}-\frac {x}{c}\)

input
Int[Log[a + b*x]/(c + d/x^2),x]
 
output
-(x/c) + ((a + b*x)*Log[a + b*x])/(b*c) - (Sqrt[d]*Log[a + b*x]*Log[(b*(Sq 
rt[d] - Sqrt[-c]*x))/(a*Sqrt[-c] + b*Sqrt[d])])/(2*(-c)^(3/2)) + (Sqrt[d]* 
Log[a + b*x]*Log[-((b*(Sqrt[d] + Sqrt[-c]*x))/(a*Sqrt[-c] - b*Sqrt[d]))])/ 
(2*(-c)^(3/2)) + (Sqrt[d]*PolyLog[2, (Sqrt[-c]*(a + b*x))/(a*Sqrt[-c] - b* 
Sqrt[d])])/(2*(-c)^(3/2)) - (Sqrt[d]*PolyLog[2, (Sqrt[-c]*(a + b*x))/(a*Sq 
rt[-c] + b*Sqrt[d])])/(2*(-c)^(3/2))
 

3.4.9.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2856
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_) + (g_. 
)*(x_)^(r_))^(q_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*Log[c*(d + e*x) 
^n])^p, (f + g*x^r)^q, x], x] /; FreeQ[{a, b, c, d, e, f, g, n, r}, x] && I 
GtQ[p, 0] && IntegerQ[q] && (GtQ[q, 0] || (IntegerQ[r] && NeQ[r, 1]))
 
3.4.9.4 Maple [A] (verified)

Time = 0.36 (sec) , antiderivative size = 220, normalized size of antiderivative = 0.89

method result size
derivativedivides \(\frac {\frac {\left (b x +a \right ) \ln \left (b x +a \right )-b x -a}{c}-\frac {d \,b^{2} \left (-\frac {\ln \left (b x +a \right ) \left (-\ln \left (\frac {b \sqrt {-c d}+c a -c \left (b x +a \right )}{b \sqrt {-c d}+c a}\right )+\ln \left (\frac {b \sqrt {-c d}-c a +c \left (b x +a \right )}{b \sqrt {-c d}-c a}\right )\right )}{2 b \sqrt {-c d}}+\frac {\operatorname {dilog}\left (\frac {b \sqrt {-c d}+c a -c \left (b x +a \right )}{b \sqrt {-c d}+c a}\right )-\operatorname {dilog}\left (\frac {b \sqrt {-c d}-c a +c \left (b x +a \right )}{b \sqrt {-c d}-c a}\right )}{2 b \sqrt {-c d}}\right )}{c}}{b}\) \(220\)
default \(\frac {\frac {\left (b x +a \right ) \ln \left (b x +a \right )-b x -a}{c}-\frac {d \,b^{2} \left (-\frac {\ln \left (b x +a \right ) \left (-\ln \left (\frac {b \sqrt {-c d}+c a -c \left (b x +a \right )}{b \sqrt {-c d}+c a}\right )+\ln \left (\frac {b \sqrt {-c d}-c a +c \left (b x +a \right )}{b \sqrt {-c d}-c a}\right )\right )}{2 b \sqrt {-c d}}+\frac {\operatorname {dilog}\left (\frac {b \sqrt {-c d}+c a -c \left (b x +a \right )}{b \sqrt {-c d}+c a}\right )-\operatorname {dilog}\left (\frac {b \sqrt {-c d}-c a +c \left (b x +a \right )}{b \sqrt {-c d}-c a}\right )}{2 b \sqrt {-c d}}\right )}{c}}{b}\) \(220\)
risch \(\frac {\ln \left (b x +a \right ) x}{c}+\frac {\ln \left (b x +a \right ) a}{b c}-\frac {x}{c}-\frac {a}{b c}-\frac {d \ln \left (b x +a \right ) \ln \left (\frac {b \sqrt {-c d}+c a -c \left (b x +a \right )}{b \sqrt {-c d}+c a}\right )}{2 c \sqrt {-c d}}+\frac {d \ln \left (b x +a \right ) \ln \left (\frac {b \sqrt {-c d}-c a +c \left (b x +a \right )}{b \sqrt {-c d}-c a}\right )}{2 c \sqrt {-c d}}-\frac {d \operatorname {dilog}\left (\frac {b \sqrt {-c d}+c a -c \left (b x +a \right )}{b \sqrt {-c d}+c a}\right )}{2 c \sqrt {-c d}}+\frac {d \operatorname {dilog}\left (\frac {b \sqrt {-c d}-c a +c \left (b x +a \right )}{b \sqrt {-c d}-c a}\right )}{2 c \sqrt {-c d}}\) \(248\)

input
int(ln(b*x+a)/(c+d/x^2),x,method=_RETURNVERBOSE)
 
output
1/b*(1/c*((b*x+a)*ln(b*x+a)-b*x-a)-d*b^2/c*(-1/2*ln(b*x+a)*(-ln((b*(-c*d)^ 
(1/2)+c*a-c*(b*x+a))/(b*(-c*d)^(1/2)+c*a))+ln((b*(-c*d)^(1/2)-c*a+c*(b*x+a 
))/(b*(-c*d)^(1/2)-c*a)))/b/(-c*d)^(1/2)+1/2*(dilog((b*(-c*d)^(1/2)+c*a-c* 
(b*x+a))/(b*(-c*d)^(1/2)+c*a))-dilog((b*(-c*d)^(1/2)-c*a+c*(b*x+a))/(b*(-c 
*d)^(1/2)-c*a)))/b/(-c*d)^(1/2)))
 
3.4.9.5 Fricas [F]

\[ \int \frac {\log (a+b x)}{c+\frac {d}{x^2}} \, dx=\int { \frac {\log \left (b x + a\right )}{c + \frac {d}{x^{2}}} \,d x } \]

input
integrate(log(b*x+a)/(c+d/x^2),x, algorithm="fricas")
 
output
integral(x^2*log(b*x + a)/(c*x^2 + d), x)
 
3.4.9.6 Sympy [F]

\[ \int \frac {\log (a+b x)}{c+\frac {d}{x^2}} \, dx=\int \frac {x^{2} \log {\left (a + b x \right )}}{c x^{2} + d}\, dx \]

input
integrate(ln(b*x+a)/(c+d/x**2),x)
 
output
Integral(x**2*log(a + b*x)/(c*x**2 + d), x)
 
3.4.9.7 Maxima [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.34 (sec) , antiderivative size = 298, normalized size of antiderivative = 1.21 \[ \int \frac {\log (a+b x)}{c+\frac {d}{x^2}} \, dx=-{\left (\frac {d \arctan \left (\frac {c x}{\sqrt {c d}}\right )}{\sqrt {c d} c} - \frac {x}{c}\right )} \log \left (b x + a\right ) - \frac {2 \, b c x - 2 \, a c \log \left (b x + a\right ) + {\left (b \arctan \left (\frac {{\left (b^{2} x + a b\right )} \sqrt {c} \sqrt {d}}{a^{2} c + b^{2} d}, \frac {a b c x + a^{2} c}{a^{2} c + b^{2} d}\right ) \log \left (c x^{2} + d\right ) - b \arctan \left (\frac {\sqrt {c} x}{\sqrt {d}}\right ) \log \left (\frac {b^{2} c x^{2} + 2 \, a b c x + a^{2} c}{a^{2} c + b^{2} d}\right ) + i \, b {\rm Li}_2\left (-\frac {a b c x + b^{2} d + {\left (i \, b^{2} x - i \, a b\right )} \sqrt {c} \sqrt {d}}{a^{2} c + 2 i \, a b \sqrt {c} \sqrt {d} - b^{2} d}\right ) - i \, b {\rm Li}_2\left (-\frac {a b c x + b^{2} d - {\left (i \, b^{2} x - i \, a b\right )} \sqrt {c} \sqrt {d}}{a^{2} c - 2 i \, a b \sqrt {c} \sqrt {d} - b^{2} d}\right )\right )} \sqrt {c} \sqrt {d}}{2 \, b c^{2}} \]

input
integrate(log(b*x+a)/(c+d/x^2),x, algorithm="maxima")
 
output
-(d*arctan(c*x/sqrt(c*d))/(sqrt(c*d)*c) - x/c)*log(b*x + a) - 1/2*(2*b*c*x 
 - 2*a*c*log(b*x + a) + (b*arctan2((b^2*x + a*b)*sqrt(c)*sqrt(d)/(a^2*c + 
b^2*d), (a*b*c*x + a^2*c)/(a^2*c + b^2*d))*log(c*x^2 + d) - b*arctan(sqrt( 
c)*x/sqrt(d))*log((b^2*c*x^2 + 2*a*b*c*x + a^2*c)/(a^2*c + b^2*d)) + I*b*d 
ilog(-(a*b*c*x + b^2*d + (I*b^2*x - I*a*b)*sqrt(c)*sqrt(d))/(a^2*c + 2*I*a 
*b*sqrt(c)*sqrt(d) - b^2*d)) - I*b*dilog(-(a*b*c*x + b^2*d - (I*b^2*x - I* 
a*b)*sqrt(c)*sqrt(d))/(a^2*c - 2*I*a*b*sqrt(c)*sqrt(d) - b^2*d)))*sqrt(c)* 
sqrt(d))/(b*c^2)
 
3.4.9.8 Giac [F]

\[ \int \frac {\log (a+b x)}{c+\frac {d}{x^2}} \, dx=\int { \frac {\log \left (b x + a\right )}{c + \frac {d}{x^{2}}} \,d x } \]

input
integrate(log(b*x+a)/(c+d/x^2),x, algorithm="giac")
 
output
integrate(log(b*x + a)/(c + d/x^2), x)
 
3.4.9.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\log (a+b x)}{c+\frac {d}{x^2}} \, dx=\int \frac {\ln \left (a+b\,x\right )}{c+\frac {d}{x^2}} \,d x \]

input
int(log(a + b*x)/(c + d/x^2),x)
 
output
int(log(a + b*x)/(c + d/x^2), x)